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polyno;nial could not be justified for any of the
shear or quasi-shear modes, with the exception
of three modes belonging to the moduli ¢,, and
css. These three modes represent borderline cases
and were for the sake of uniformity also fitted
to second-order polynomials.

In all, 23 pressure tests were performed on the
four specimens used in this study. In this way
many cross checks of the pressure dependence
of the elastic constants resulting from different
propagation directions in the specimens could be
examined for consistency. As typical examples
of unprocessed pressure data, the normalized
quantity (to/t,)? = (WV/W,)?, where ¢, denotes
the transit time at zero pressure, is plotted
versus pressures for the modes corresponding to
the on-diagonal longitudinal moduli (Figure 2)
and for those corresponding to the shear modulus
css and the cross-coupling modulus ¢,; (Figure 3).
To illustrate the nonlinearity for the shear modes,
the initial slope for N = [001] and U = [100]
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(css) (Figure 3) has been linearly extrapolated
to higher pressures. It is also apparent (Figure 3)
that the quasi-shear mode corresponding to ¢
also shows a distinctly nonlinear behavior. All
solid lines in this figure represent the quadratic
least-squares fit according to

(w/ Wo)z = (’o/tr)2 .
=14 (W /WSYP + (W/W,)""P*/2 (2)
For calculating the first pressure derivatives

-of the elastic constants from the measured

values of (p,#V?)’, the isothermal single-crystal
bulk modulus K," and the isothermal compli-
ance coefficients S,,” are required. The adiabatic
single-crystal bulk modulus can be determined
from the general expression

Ko® = (S:uii)™ (3
and converted to its isothermal counterpart by
Overton’s [1962] equation 2. This equation
gives K, = 1.021 Mb and K, = 0.998 Mb.
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Fig. 3. Experimental data of (&/¢,)* as a function of pressure for the elastic moduli css
and cus. Solid squares and solid circles indicate specimen 1; open squares, specimen 3; solid

and open triangles, specimen 4.
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TABLE 6.  Adiabatic and Isothermal Elastic Compliance Coefficients at 25°C
(A1l values in Mb'1.)

Coefficient Adiabatic Isothermal

0.5253
0.7453
0.5231
1.223
1.325
1.288

0.5259
0.7474
0.5259
Y223
1.325
1.288

-0.2053
-0.0914
-0.1095

-0.2029
-0.0886
-0.1070

The adiabatic compliance coefficients can be
determined by inversion of the adiabatic clastic-
constant matrix, and the isothermal compliance
coefficients can be calculated from Thurston
[1967]:

S.-.'ur = Sems e (Ta-'.,ﬂu/PoCP) (4)

where a,; are the linear thermal-expansion co-

efficients, T is the temperature, and C, is the

specific heat at constant pressure. The thermal-
expansion coefficients of bronzite used were
determined by Frisillo and Buljan [1972], and
the specific heat was calculated from the present
elastic data [Anderson, 1965]. The value ob-
tained for C, = 94.66 mole™ °K™. The adiabatic
elastic compliances are tabulated in Table 6
together with the isothermal values calculated
from the preceding data.

First pressure derivatives of effective second-
order elastic constants. The isothermal first
pressure derivatives of the adiabatic effective
elastic constants were calculated by using the
equations given by Graham [1969] and Barsch
and Frisillo [1973] (Table 7). The internal cross
checks resulting from orthorhombic symmetry
coupled with checks from the four difierent
specimens show excellent agreement in the com-
puted values. .

Because an intercrystal check on the pressure
derivatives of ¢;; was not possible, the reliability
of the measured values was examined by making
two independent pressure runs. Although the
cross-coupling meduli may also be determined

by propagation of quasi-longitudinal modes,

their echoes became very small and nondistinet

at pressures of about 4.5 kb and were not detected
by the automatic peak finder. Because this
phenomenon “was observed for all longitudinal
pressure runs, all longitudinal data above approx-
imately 4.5 kb were taken manually (i.e., without
the automatic peak finder). Because a small but
significant amount of curvature was observed
for all shear moduli and because the manually
taken data were not precise enough to describe
this curvature, consistency for the pressure
derivatives of the cross-coupling coefficients was
again determined by repeating the quasi-shear
pressure runs. A single quasi-longitudinal run
was performed for propagation direction N =
[0mn] and polarization U = [0mn] and was then
used as a consistency check for (dca3/0P)r = cad’
and as an independent check on the accuracy of
¢ss’. An independent check on ¢;3’ results from
considering the expressions given by Fisher and
MeSkimin [1958] to calculate the direction
“cosines for propagation direction N = [Omn]:

. R PVosz = F'ch'z = (Cass -+ c'“s) 5)
N c”s s _ (

where m* 4+ n* = 1. By differentiating (5) with
respect to pressure and solving for ¢/, the fol-
lowing expression is obtained:

F

e’ = {[(pi’;,,’)' + (pV)as’ — eu'ln

—(p Vm'2 =4 PVqs2 V= C«)znl

— (2m'cyy + me)nm + 2m’ncy,} /0’ (6)

Here m’ and »’ denote the first pressure deriva-
tives of the direction cosines, which can be cal-




